About me
I am currently a Professor at the School of Mathematical Sciences, Shenzhen University. My research focuses on large-scale optimization and optimal control problems, encompassing both the development of algorithms and complexity analysis. I have worked on sum-of-squares relaxations for polynomial optimization, inexact augmented Lagrangian methods, restarting techniques for Nesterov’s accelerated methods, randomized coordinate descent (serial, parallel, distributed, accelerated, and primal-dual variants), attenuation of the curse of dimensionality for solving Hamilton-Jacobi-Bellman equations, and nonlinear Perron-Frobenius theory.
Join our research team!
We are seeking talented researchers and postgraduate students to become part of our dynamic group.
Undergraduate students interested in pursuing undergraduate research projects with us are also warmly welcomed.
New papers
- Zheng Qu, Defeng Sun and Jintao Xu. Progressive Bound Strengthening via Doubly Nonnegative Cutting Planes for Nonconvex Quadratic Programs, arXiv preprint arXiv:2510.02948, 2025. arXiv:2510.02948| code
- Kaja Gruntkowska, Yassine Maziane, Zheng Qu and Peter Richtárik. Drop-Muon: Update Less, Converge Faster, arXiv preprint arXiv:2510.02239, 2025. arXiv:2510.02239
Journal Publications
- Zheng Hua and Zheng Qu. Exactness and effective degree bound of Lasserre's relaxation for polynomial optimization over finite variety, Mathematics of Operations Research, 2025. DOI:10.1287/moor.2024.0483
- Jiawang Nie, Zheng Qu, Xindong Tang and Linghao Zhang. A characterization for tightness of the sparse Moment-SOS hierarchy, Mathematical Programming, 2025. DOI:10.1007/s10107-025-02223-2
- Zheng Qu, Tianyou Zeng and Yuchen Lou. Globally solving concave quadratic programs via doubly nonnegative relaxation, Mathematical Programming Computation 17, 451–503 2025. DOI:10.1007/s12532-025-00279-x | code
- Zheng Qu and Xindong Tang. A correlatively sparse Lagrange multiplier expression relaxation for polynomial optimization, SIAM Journal on Optimization 34(1), 127-162, 2024. DOI:10.1137/22M1515689
- Marianne Akian, Stephane Gaubert, Zheng Qu and Omar Saadi. Multiply accelerated value iteration for non-symmetric affine fixed point problems and application to Markov decision processes, SIAM Journal on Matrix Analysis and Applications 43(1), 199-232, 2022. DOI:10.1137/20M1367192
- Fei Li, Zheng Qu. An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization, Mathematical Programming Computation 13, 583-644, 2021. DOI:10.1007/s12532-021-00205-x| code
- Xun Qian, Zheng Qu and Peter Richtárik. L-SVRG and L-Katyusha with arbitrary sampling, Journal of Machine Learning Research, 22(112), 1-47, 2021.
- Olivier Fercoq, Zheng Qu. Restarting the accelerated coordinate descent method with a rough strong convexity estimate, Computational Optimization and Applications, 75:63-91, 2020. DOI:10.1007/s10589-019-00137-2
- Olivier Fercoq, Zheng Qu. Adaptive restart of accelerated gradient methods under local quadratic growth condition, IMA Journal of Numerical Analysis, 39(4):2069-2095, 2019. DOI:10.1093/imanum/drz007
- Yassamine Seladji, Zheng Qu. Polyhedron overapproximation for complexity reduction in static analysis, International Journal of Computer Mathematics: Computer Systems Theory, 2018. DOI:10.1080/23799927.2018.1535525
- Jakub Konečný, Zheng Qu and Peter Richtárik. S2CD: Semi-stochastic coordinate descent, Optimization Methods and Software, 32:993-1005, 2017. DOI:10.1080/10556788.2017.1298596
- Stephane Gaubert, Zheng Qu. Checking the strict positivity of Kraus maps is NP-hard, Information Processing Letters, 118:35-43, 2017. DOI:10.1016/j.ipl.2016.09.008
- Zheng Qu, Peter Richtárik. Coordinate descent with arbitrary sampling I: algorithms and complexity, Optimization Methods and Software, 31(5):829-857, 2016. DOI:10.1080/10556788.2016.1190360
- Zheng Qu, Peter Richtárik. Coordinate descent with arbitrary sampling II: expected separable overapproximation, Optimization Methods and Software,31(5):858-884, 2016. DOI:10.1080/10556788.2016.1190361
- Stephane Gaubert, Zheng Qu and Srinivas Sridharan. Maximizing concave piecewise affine functions on the unitary group, Optimization Letters, 10(4):655-665, 2016. DOI:10.1007/s11590-015-0951-y
- Stephane Gaubert, Zheng Qu. Dobrushin ergodicity coefficient for Markov operators on cones, Integral Equations and Operator Theory, 81(1):127-150, 2014. DOI:10.1007/s00020-014-2193-2
- Zheng Qu. Contraction of Riccati flows applied to the convergence analysis of a max-plus curse of dimensionality free method, SIAM Journal on Control and Optimization, 52(5):2677-2706, 2014. DOI:10.1137/130906702
- Stephane Gaubert, Zheng Qu. The contraction rate in Thompson metric of order-preserving flows on a cone - application to generalized Riccati equations, Journal of Differential Equations, 256(8):2902-2948, 2014. DOI:10.1016/j.jde.2014.01.024
Refereed Conference Proceeding Publications
- Marianne Akian, Stephane Gaubert, Zheng Qu and Omar Saadi. Solving ergodic Markov decision processes and perfect information Zero-sum stochastic games by variance reduced deflated value iteration, IEEE 58th Conference on Decision and Control (CDC), Nice, France, pp. 5963-5970, 2019.
- Xun Qian, Zheng Qu and Peter Richtárik. SAGA with arbitrary sampling, Proceedings of the 36th International Conference on Machine Learning (ICML), PMLR 97:5190-5199, 2019.
- Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik and Yang Yuan. Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling, Proceedings of the 33rd International Conference on Machine Learning (ICML), PMLR 48:1110-1119, 2016.
- Zheng Qu, Peter Richtárik, Martin Takáč and Olivier Fercoq. SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization, Proceedings of the 33rd International Conference on Machine Learning (ICML), PMLR 48:1823-1832, 2016.
- Dominik Csiba, Zheng Qu and Peter Richtárik. Stochastic Dual Coordinate Ascent with Adaptive Probabilities, Proceedings of the 32nd International Conference on Machine Learning (ICML), PMLR 37:674-683, 2015.
- Zheng Qu, Peter Richtárik and Tong Zhang. Randomized dual coordinate ascent with arbitrary sampling, Advances in Neural Information Processing Systems (NeurIPS) 28, pp. 865-873, 2015.
- Zheng Qu. A max-plus based randomized algorithm for solving a class of HJB PDEs, 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, CA, 2014, pp. 1575-1580.
- Stephane Gaubert, Zheng Qu and Srinivas Sridharan. Bundle-based pruning in the max-plus curse of dimensionality free method, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS), Groningen, 2014.
- Zheng Qu. Contraction of Riccati flows applied to the convergence analysis of the max-plus curse of dimensionality free method. Proceedings of the 12th biannual European Control Conference (ECC), pp.2226-2231, 2013.
- Stephane Gaubert, Zheng Qu. Markov operators on cones and non-commutative consensus. Proceedings of the 12th biannual European Control Conference (ECC), pp.2693-2700, 2013.
- Stephane Gaubert, William M. McEneaney and Zheng Qu. Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms, IEEE 50th Conference on Decision and Control and European Control Conference (CDC), pp.1054-1061, Orlando, 2011.
